These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Body schema learning for robotic manipulators from visual self-perception. Author: Sturm J, Plagemann C, Burgard W. Journal: J Physiol Paris; 2009; 103(3-5):220-31. PubMed ID: 19665561. Abstract: We present an approach to learning the kinematic model of a robotic manipulator arm from scratch using self-observation via a single monocular camera. We introduce a flexible model based on Bayesian networks that allows a robot to simultaneously identify its kinematic structure and to learn the geometrical relationships between its body parts as a function of the joint angles. Further, we show how the robot can monitor the prediction quality of its internal kinematic model and how to adapt it when its body changes-for example due to failure, repair, or material fatigue. In experiments carried out both on real and simulated robotic manipulators, we verified the validity of our approach for real-world problems such as end-effector pose prediction and end-effector pose control.[Abstract] [Full Text] [Related] [New Search]