These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of sources of variability on sample sizes required for RCTs, applied to trials of lipid-altering therapies on carotid artery intima-media thickness. Author: Gould AL, Koglin J, Bain RP, Pinto CA, Mitchel YB, Pasternak RC, Sapre A. Journal: Clin Trials; 2009 Aug; 6(4):305-19. PubMed ID: 19667027. Abstract: OBJECTIVE: Studies measuring progression of carotid artery intima-media thickness (cIMT) have been used to estimate the effect of lipid-modifying therapies cardiovascular event risk. The likelihood that future cIMT clinical trials will detect a true treatment effect is estimated by leveraging results from prior studies. The present analyses assess the impact of between- and within-study variability based on currently published data from prior clinical studies on the likelihood that ongoing or future cIMT trials will detect the true treatment effect of lipid-modifying therapies. METHODS: Published data from six contemporary cIMT studies (ASAP, ARBITER 2, RADIANCE 1, RADIANCE 2, ENHANCE, and METEOR) including data from a total of 3563 patients were examined. Bayesian and frequentist methods were used to assess the impact of between study variability on the likelihood of detecting true treatment effects on 1-year cIMT progression/regression and to provide a sample size estimate that would specifically compensate for the effect of between-study variability. RESULTS: In addition to the well-described within-study variability, there is considerable between-study variability associated with the measurement of annualized change in cIMT. Accounting for the additional between-study variability decreases the power for existing study designs. In order to account for the added between-study variability, it is likely that future cIMT studies would require a large increase in sample size in order to provide substantial probability (> or =90%) to have 90% power of detecting a true treatment effect.Limitation Analyses are based on study level data. Future meta-analyses incorporating patient-level data would be useful for confirmation. CONCLUSION: Due to substantial within- and between-study variability in the measure of 1-year change of cIMT, as well as uncertainty about progression rates in contemporary populations, future study designs evaluating the effect of new lipid-modifying therapies on atherosclerotic disease progression are likely to be challenged by large sample sizes in order to demonstrate a true treatment effect.[Abstract] [Full Text] [Related] [New Search]