These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Chlamydia muridarum-specific CD4 T-cell clones recognize infected reproductive tract epithelial cells in an interferon-dependent fashion.
    Author: Jayarapu K, Kerr MS, Katschke A, Johnson RM.
    Journal: Infect Immun; 2009 Oct; 77(10):4469-79. PubMed ID: 19667042.
    Abstract:
    During natural infections Chlamydia trachomatis urogenital serovars replicate predominantly in the epithelial cells lining the reproductive tract. This tissue tropism poses a unique challenge to host cellar immunity and future vaccine development. In the experimental mouse model, CD4 T cells are necessary and sufficient to clear Chlamydia muridarum genital tract infections. This implies that resolution of genital tract infection depends on CD4 T-cell interactions with infected epithelial cells. However, no laboratory has shown that Chlamydia-specific CD4 T cells can recognize Chlamydia antigens presented by major histocompatibility complex class II (MHC-I) molecules on epithelial cells. In this report we show that MHC-II-restricted Chlamydia-specific CD4 T-cell clones recognize infected upper reproductive tract epithelial cells as early as 12 h postinfection. The timing of recognition and degree of T-cell activation are dependent on the interferon (IFN) milieu. Beta IFN (IFN-beta) and IFN-gamma have different effects on T-cell activation, with IFN-beta blunting IFN-gamma-induced upregulation of epithelial cell surface MHC-II and T-cell activation. Individual CD4 T-cell clones differed in their degrees of dependence on IFN-gamma-regulated MHC-II for controlling Chlamydia replication in epithelial cells in vitro. We discuss our data as they relate to published studies with IFN knockout mice, proposing a straightforward interpretation of the existing literature based on CD4 T-cell interactions with the infected reproductive tract epithelium.
    [Abstract] [Full Text] [Related] [New Search]