These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Human NARP mitochondrial mutation metabolism corrected with alpha-ketoglutarate/aspartate: a potential new therapy. Author: Sgarbi G, Casalena GA, Baracca A, Lenaz G, DiMauro S, Solaini G. Journal: Arch Neurol; 2009 Aug; 66(8):951-7. PubMed ID: 19667215. Abstract: OBJECTIVE: To verify whether enhanced substrate-level phosphorylation increases viability and adenosine 5'-triphosphate (ATP) content of cells with neuropathy, ataxia, and retinitis pigmentosa/maternally inherited Leigh syndrome (NARP/MILS) mitochondrial DNA mutations and ATP synthase dysfunction. DESIGN: We used cell lines "poisoned" with oligomycin, the specific inhibitor of ATP synthase, and "natural" models, including transmitochondrial human cell lines (cybrids) harboring 2 different pathogenic mutations associated with the NARP/MILS phenotypes. MAIN OUTCOME MEASURES: Cell survival, morphology, and ATP content. RESULTS: When normal human fibroblasts cultured in glucose-free medium were forced to increase energy consumption by exposure to the ionophore gramicidin or were energy challenged by oligomycin inhibition, their survival at 72 hours was 5%, but this increased to 70% when the medium was supplemented with alpha-ketoglutarate/aspartate to boost mitochondrial substrate-level phosphorylation. Homoplasmic cybrids harboring the 8993T-->G NARP mutation were also protected from death (75% vs 15% survival at 72 hours) by the supplemented medium and their ATP content was similar to controls. CONCLUSIONS: These results show that ATP synthase-deficient cells can be rescued by increasing mitochondrial substrate-level phosphorylation and suggest potential dietary or pharmacological therapeutic approaches based on the supplementation of alpha-ketoglutarate/aspartate to patients with impaired ATP synthase activity.[Abstract] [Full Text] [Related] [New Search]