These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effect-based and chemical analysis of polycyclic aromatic hydrocarbons in smoked meat: a practical food-monitoring approach. Author: Kuhn K, Nowak B, Behnke A, Seidel A, Lampen A. Journal: Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2009 Jul; 26(7):1104-12. PubMed ID: 19680986. Abstract: Polycyclic aromatic hydrocarbons (PAHs), which are generated by heat treatment and smoke curing of meat, pose a risk to human health. At present, the determination of these unwanted contaminants requires costly, time-consuming chemical analysis of smoked meat. An alternative is effect-directed high-throughput bioassays, which could also be used as a pre-screening method. The authors recently adapted the in vitro chemical-activated luciferase gene expression (CALUX) assay as a rapid, sensitive, and inexpensive screening technique for compounds such as dioxins, polychlorinated biphenyls, and PAHs. The aim of the present study was to apply a practical approach under realistic conditions. Custom-made meat samples produced under defined conditions with different PAH levels were analysed using this bioassay and gas chromatography-mass spectrometry (GC/MS) to determine the influence of different smoking conditions (temperature and duration) on PAH levels. It was found that cold smoking for up to 6 h did not result in strong PAH contamination, whereas hot (65 degrees C) and longer smoking times caused a considerable increase in both the bioassay response and the levels of 31 individually determined PAHs. The response in the effect-based bioassay was in good agreement with the values of chemical analysis. The bioassay made it possible to determine accurately the degree of contamination. The results show that this assay is suitable for high-throughput screening for unknown levels of toxicologically relevant PAHs in meat samples and is sensitive enough to differentiate between different PAH levels generated under various smoking conditions. Effect-based screening techniques, therefore, provide a new instrument for official food monitoring.[Abstract] [Full Text] [Related] [New Search]