These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Somatic Ca2+ signaling in cerebellar Purkinje neurons.
    Author: Gruol DL, Netzeband JG, Nelson TE.
    Journal: J Neurosci Res; 2010 Feb 01; 88(2):275-89. PubMed ID: 19681168.
    Abstract:
    Activity-driven Ca(2+) signaling plays an important role in a number of neuronal functions, including neuronal growth, differentiation, and plasticity. Both cytosolic and nuclear Ca(2+) has been implicated in these functions. In the current study, we investigated membrane-to-nucleus Ca(2+) signaling in cerebellar Purkinje neurons in culture to gain insight into the pathways and mechanisms that can initiate nuclear Ca(2+) signaling in this neuronal type. Purkinje neurons are known to express an abundance of Ca(2+) signaling molecules such as voltage-gated Ca(2+) channels, ryanodine receptors, and IP3 receptors. Results show that membrane depolarization evoked by brief stimulation with K(+) saline elicits a prominent Ca(2+) signal in the cytosol and nucleus of the Purkinje neurons. Ca(2+) influx through P/Q- and L-type voltage-gated Ca(2+) channels and Ca(2+)-induced Ca(2+) release (CICR) from intracellular stores contributed to the Ca(2+) signal, which spread from the plasma membrane to the nucleus. At strong K(+) stimulations, the amplitude of the nuclear Ca(2+) signal exceeded that of the cytosolic Ca(2+) signal, suggesting the involvement of a nuclear amplification mechanism and/or differences in Ca(2+) buffering in these two cellular compartments. An enhanced nuclear Ca(2+) signal was more prominent for Ca(2+) signals elicited by membrane depolarization than for Ca(2+) signals elicited by activation of the metabotropic glutamate receptor pathway (mGluR1), which is linked to Ca(2+) release from intracellular stores controlled by the IP3 receptor.
    [Abstract] [Full Text] [Related] [New Search]