These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Prolyl isomerase Pin1 shares functional similarity with phosphorylated CTD interacting factor PCIF1 in vertebrate cells. Author: Yunokuchi I, Fan H, Iwamoto Y, Araki C, Yuda M, Umemura H, Harada F, Ohkuma Y, Hirose Y. Journal: Genes Cells; 2009 Sep; 14(9):1105-18. PubMed ID: 19682092. Abstract: The carboxy-terminal domain (CTD) of the RNA polymerase II (Pol II) largest subunit undergoes reversible phosphorylation during transcription cycle. The phosphorylated CTD plays critical roles in coordinating transcription with chromatin modification and RNA processing by serving as a scaffold to recruit various proteins. Recently, we identified a novel human WW domain-containing protein PCIF1 as a phosphorylated CTD-interacting factor and demonstrated that PCIF1 negatively modulates Pol II activity in vivo. In the present study, to explore cellular functions of PCIF1, we generated PCIF1-deficient chicken DT40 cell lines. We observed significant up-regulation of WW domain-containing prolyl isomerase Pin1 in two independently established PCIF1-deficient mutant clones. As reconstitution of PCIF1 in the mutants did not reduce Pin1 expression, PCIF1 may not be a negative regulator of Pin1 expression. We assume that Pin1 over-expression might suppress defects caused by PCIF1 deficiency in DT40 cells. We furthermore compared PCIF1 and Pin1 for their functional properties and found that these two proteins exhibit most similar target specificity among other CTD-binding WW proteins, overlapping subcellular localization and comparative inhibitory effects on transcriptional activation by Pol II in human cultured cells. These results suggest that Pin1 may have overlapping cellular function with PCIF1 in vertebrate cells.[Abstract] [Full Text] [Related] [New Search]