These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Increased nitrogen-use efficiency in transgenic rice plants over-expressing a nitrogen-responsive early nodulin gene identified from rice expression profiling.
    Author: Bi YM, Kant S, Clarke J, Gidda S, Ming F, Xu J, Rochon A, Shelp BJ, Hao L, Zhao R, Mullen RT, Zhu T, Rothstein SJ.
    Journal: Plant Cell Environ; 2009 Dec; 32(12):1749-60. PubMed ID: 19682292.
    Abstract:
    Development of genetic varieties with improved nitrogen-use efficiency (NUE) is essential for sustainable agriculture. In this study, we developed a growth system for rice wherein N was the growth-limiting factor, and identified N-responsive genes by a whole genome transcriptional profiling approach. Some genes were selected to test their functionality in NUE by a transgenic approach. One such example with positive effects on NUE is an early nodulin gene OsENOD93-1. This OsENOD93-1 gene responded significantly to both N induction and N reduction. Transgenic rice plants over-expressing the OsENOD93-1 gene had increased shoot dry biomass and seed yield. This OsENOD93-1 gene was expressed at high levels in roots of wild-type (WT) plants, and its protein product was localized in mitochondria. Transgenic plants accumulated higher concentrations of total amino acids and total N in roots. A higher concentration of amino acids in xylem sap was detected in transgenic plants, especially under N stress. In situ hybridization revealed that OsENOD93-1 is expressed in vascular bundles, as well as in epidermis and endodermis. This work demonstrates that transcriptional profiling, coupled with a transgenic validation approach, is an effective strategy for gene discovery. The knowledge gained from this study could be applied to other important crops.
    [Abstract] [Full Text] [Related] [New Search]