These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Descending bulbospinal pathways and recovery of respiratory motor function following spinal cord injury. Author: Vinit S, Kastner A. Journal: Respir Physiol Neurobiol; 2009 Nov 30; 169(2):115-22. PubMed ID: 19682608. Abstract: The rodent respiratory system is a relevant model for study of the intrinsic post-lesion mechanisms of neuronal plasticity and resulting recovery after high cervical spinal cord injury. An unilateral cervical injury (hemisection, lateral section or contusion) interrupts unilaterally bulbospinal respiratory pathways to phrenic motor neurons innervating the diaphragm and leads to important respiratory defects on the injured side. However, the ipsilateral phrenic nerve exhibits a spontaneous and progressive recovery with post-lesion time. Shortly after a lateral injury, this partial recovery depends on the activation of contralateral pathways that cross the spinal midline caudal to the injury. Activation of these crossed phrenic pathways after the injury depends on the integrity of phrenic sensory afferents. These pathways are located principally in the lateral part of the spinal cord and involve 30% of the medullary respiratory neurons. By contrast, in chronic post-lesion conditions, the medial part of the spinal cord becomes sufficient to trigger substantial ipsilateral respiratory drive. Thus, after unilateral cervical spinal cord injury, respiratory reactivation is associated with a time-dependent anatomo-functional reorganization of the bulbospinal respiratory descending pathways, which represents an adaptative strategy for functional compensation.[Abstract] [Full Text] [Related] [New Search]