These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Inhibition of cyclooxygenase-2 suppresses lymph node metastasis via VEGF-C. Author: Liu H, Yang Y, Xiao J, Lv Y, Liu Y, Yang H, Zhao L. Journal: Anat Rec (Hoboken); 2009 Oct; 292(10):1577-83. PubMed ID: 19685508. Abstract: Most experimental work addressing cyclooxygenase-2 (COX-2) inhibitor has focused on suppressing hematogenic spread. Little is known about the mechanism by which this inhibitor can also block lymphatic metastasis. Here, the effects of COX-2 inhibitor on vascular endothelial growth factor-C (VEGF-C) expression, lymphangiogenesis and lymph node metastasis were investigated. Utilizing the highly metastatic human lung adenocarcinoma cell line Anip973 and its parental line AGZY83-a, which has a low metastatic capacity, we found elevated VEGF-C and COX-2 immunoreactivity in Anip973 cells compared with AGZY83-a cells. Celecoxib down-regulated expression of VEGF-C mRNA and protein in Anip973 cells while PGE(2) up-regulated expression of VEGF-C mRNA and protein in AGZY83-a cells in a concentration-dependent manner. The expression of COX-2 and VEGF-C was significantly increased in xenografted Anip973 tumors compared with AGZY83-a tumors. The Anip973 tumors showed more lymphatic vessels and lymph node metastasis than the AGZY83-a tumors. In vivo, celecoxib decreased VEGF-C expression in Anip973 tumor-treated mice to a similar level to that in the AGZY83-a tumor-treated mice. Consistent with this decrease in VEGF-C expression, the density of lymphatic vessels and lymph node metastasis in Anip973 tumor-treated mice were suppressed to approximately that found in the AGZY83-a tumor-treated ones. Taken together, our results suggest that the differential expression of COX-2 and VEGF-C might help explain the different metastasis phenotype of lung adenocarcinoma cancer, and that COX-2 inhibitor mediates VEGF-C to block lymphangiogenesis and lymph node metastasis. Thus, COX-2 may be a potential therapeutic target for blocking lymph node metastasis in lung adenocarcinoma.[Abstract] [Full Text] [Related] [New Search]