These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Free-energy function based on an all-atom model for proteins. Author: Yoshidome T, Oda K, Harano Y, Roth R, Sugita Y, Ikeguchi M, Kinoshita M. Journal: Proteins; 2009 Dec; 77(4):950-61. PubMed ID: 19688821. Abstract: We have developed a free-energy function based on an all-atom model for proteins. It comprises two components, the hydration entropy (HE) and the total dehydration penalty (TDP). Upon a transition to a more compact structure, the number of accessible configurations arising from the translational displacement of water molecules in the system increases, leading to a water-entropy gain. To fully account for this effect, the HE is calculated using a statistical-mechanical theory applied to a molecular model for water. The TDP corresponds to the sum of the hydration energy and the protein intramolecular energy when a fully extended structure, which possesses the maximum number of hydrogen bonds with water molecules and no intramolecular hydrogen bonds, is chosen as the standard one. When a donor and an acceptor (e.g., N and O, respectively) are buried in the interior after the break of hydrogen bonds with water molecules, if they form an intramolecular hydrogen bond, no penalty is imposed. When a donor or an acceptor is buried with no intramolecular hydrogen bond formed, an energetic penalty is imposed. We examine all the donors and acceptors for backbone-backbone, backbone-side chain, and side chain-side chain intramolecular hydrogen bonds and calculate the TDP. Our free-energy function has been tested for three different decoy sets. It is better than any other physics-based or knowledge-based potential function in terms of the accuracy in discriminating the native fold from misfolded decoys and the achievement of high Z-scores.[Abstract] [Full Text] [Related] [New Search]