These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Enhancement of oral bioavailability of pentoxifylline by solid lipid nanoparticles.
    Author: Varshosaz J, Minayian M, Moazen E.
    Journal: J Liposome Res; 2010 Jun; 20(2):115-23. PubMed ID: 19694503.
    Abstract:
    Pentoxifylline (PTX) is a highly water-soluble, hemorheologic drug that undergoes first-pass effect with 20% bioavailability. The solid lipid nanoparticles (SLNs) of PTX were prepared to enhance its oral bioavailability by homogenization, followed by the sonification method. Seven different variables, each at two levels, were studied: lipid type, surfactant type and concentration, speed of homogenizer, acetone:dichloromethane (DCM) ratio, lecithin:lipid ratio, and sonication time. The mean particle size and size distribution, drug entrapment efficiency (EE%), zeta potential, and drug release of the SLNs were investigated. A pharmacokinetic study was conducted in male Wistar rats after oral administration of 10 mg kg(-1) PTX in the form of free drug or SLNs. The z-average particle size, zeta potential, and EE% of the SLNs were at least 250 nm, -30.2 mV, and 70%, respectively. Among the studied factors, the lipid type, surfactant type, and percentage had a significant effect on the particle size. Zeta potential was more affected by lipid type, acetone:DCM ratio, and sonication time. Speed of homogenizer and acetone:DCM ratio had a significant effect on the EE%. The optimized SLN was prepared by 80 mg of cetyl alcohol, 10 mg of lecithin, acetone:DCM ratio (1:2), 30-second sonication, 3% Tween 20, and a mixing rate of 800 rpm. In vitro drug release lasted for about 5 hours. It was found that the relative bioavailability of PTX in SLNs was significantly increased, compared to that of the PTX solution. SLNs offer a promising approach to improve the oral bioavailability of PTX that is affected by a high first-pass effect.
    [Abstract] [Full Text] [Related] [New Search]