These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Differential expression of proteins in Listeria monocytogenes under thermotolerance-inducing, heat shock, and prolonged heat shock conditions. Author: Agoston R, Soni K, Jesudhasan PR, Russell WK, Mohácsi-Farkas C, Pillai SD. Journal: Foodborne Pathog Dis; 2009 Nov; 6(9):1133-40. PubMed ID: 19694553. Abstract: Listeria monocytogenes is a foodborne pathogen capable of employing stress adaptive responses to evade a variety of stressors including temperature stress. We employed two-dimensional gel electrophoresis coupled with matrix-assisted laser desorption/ionization-time of flight analysis to study the differential expression of L. monocytogenes (ATCC 43256) soluble proteins at heat shock (60 degrees C) conditions, prolonged heat shock (60 degrees C for 9 minutes) conditions, and thermotolerance-inducing (48 degrees C for 30 minutes followed by 60 degrees C for 9 minutes) conditions. We compared the proteome of L. monocytogenes under these conditions to the proteome at 37 degrees C. Eighteen proteins were differentially expressed at 60 degrees C (6 up-regulated and 12 down-regulated), 21 proteins were differentially expressed (12 up-regulated and 9 down-regulated) when the cells were exposed to 60 degrees C for 9 minutes, and 20 proteins were differentially expressed (10 up-regulated and 10 down-regulated) when cells were initially exposed to 48 degrees C for 30 minutes before 60 degrees C for 9 minutes. There was one unidentifiable protein with observed molecular weight of 50 kDa which was differentially expressed across the three temperature treatments. Thermotolerance-inducing conditions caused the up-regulation of a protein by as much as 12-fold. DnaN, a previously identified stress protein, was up-regulated almost threefold at 60 degrees C. TcsA, a lipoprotein (CD4 T cell-stimulating antigen), and Gap (glyceraldehyde-3-phosphate-dehydrogenase) were selectively expressed under prolonged heat shock conditions suggesting their potential as candidate marker proteins targets for identifying temperature-stressed L. monocytogenes cells.[Abstract] [Full Text] [Related] [New Search]