These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Absolute quantification of cerebral blood flow: correlation between dynamic susceptibility contrast MRI and model-free arterial spin labeling. Author: Knutsson L, van Westen D, Petersen ET, Markenroth Bloch K, Holtås S, Ståhlberg F, Wirestam R. Journal: Magn Reson Imaging; 2010 Jan; 28(1):1-7. PubMed ID: 19695822. Abstract: PURPOSE: To compare absolute cerebral blood flow (CBF) estimates obtained by model-free arterial spin labeling (ASL) and dynamic susceptibility contrast MRI (DSC-MRI), corrected for partial volume effects (PVEs). METHODS: CBF was measured using DSC-MRI and model-free ASL (quantitative signal targeting with alternating radiofrequency labeling of arterial regions) at 3 T in 15 subjects with brain tumor, and the two modalities were compared with regard to CBF estimates in normal gray matter (GM) and DSC-to-ASL CBF ratios in selected tumor regions. The DSC-MRI CBF maps were calculated using a global arterial input function (AIF) from the sylvian-fissure region, but, in order to minimize PVEs, the AIF time integral was rescaled by a venous output function time integral obtained from the sagittal sinus. RESULTS: In GM, the average DSC-MRI CBF estimate was 150+/-45 ml/(min 100 g) (mean+/-SD) while the corresponding ASL CBF was 44+/-10 ml/(min 100 g). The linear correlation between GM CBF estimates obtained by DSC-MRI and ASL was r=.89, and observed DSC-to-ASL CBF ratios differed by less than 3% between GM and tumor regions. CONCLUSIONS: A satisfactory positive linear correlation between the CBF estimates obtained by model-free ASL and DSC-MRI was observed, and DSC-to-ASL CBF ratios showed no obvious tissue dependence.[Abstract] [Full Text] [Related] [New Search]