These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Photo-catalyzed degradation of p-nitrophenol employing TiO2 and UV radiations. Author: Shintre SN, Thakur PR. Journal: J Environ Sci Eng; 2008 Oct; 50(4):299-302. PubMed ID: 19697765. Abstract: Heterogeneous photocatalysis on metal oxide semiconductor particles is an advanced oxidation technology (AOT), which has been effective means of removing organic pollutants from water streams as it utilizes ultraviolet light with semiconductors acting as photocatalyst and leads to complete mineralization of pollutants to environmentally harmless compounds. In the present investigation, the photo-catalyzed degradation studies of p-Nitrophenol (PNP) were carried out in laboratory scale immersion well UV photo-reactor using semiconductor photo-catalyst TiO2 in suspension. For this purpose, low pressure 12 W mercury lamp was used and the effect of (i) time of irradiation, (ii) dose of TiO2, (iii) initial concentration of PNP and (iv) the addition of H2O2 to the system was studied to arrive at optimum process parameters for the complete degradation and decolorization of PNP. Simple UV irradiation could not achieve significant degradation of PNP. But UV+aeration+TiO2+ H2O2 combination achieved almost complete degradation of PNP. The spectrophotometric analysis showed that the rate of degradation of PNP was very fast in initial two hours and the maximum degradation was achieved in 5 hours. The degradation was found to increase in the order UV < UV + aeration < UV + aeration + TiO2 < UV + aeration + TiO2+ H2O2, and the degradation was found to be almost 100% for UV + aeration + TiO2 + H2O2, 91% for UV + aeration + TiO2, 43% for UV + aeration and only 26% for UV irradiation.[Abstract] [Full Text] [Related] [New Search]