These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Involvement of peroxisome proliferator-activated receptor gamma in gonadal steroidogenesis and steroidogenic acute regulatory protein expression. Author: Kowalewski MP, Dyson MT, Manna PR, Stocco DM. Journal: Reprod Fertil Dev; 2009; 21(7):909-22. PubMed ID: 19698295. Abstract: Peroxisome proliferator-activated receptor (PPAR) gamma belongs to the PPAR family of nuclear transcription factors whose ligands, such as eicosanoids, fatty acids and prostaglandins, are known to affect gonadal function. Although several of these enhance the expression of the steroidogenic acute regulatory protein (STAR) and steroid production, the role of PPARgamma in regulating STAR-mediated steroidogenesis remains unclear. In the present study, we used ciglitazone to selectively activate PPARgamma and examine its role in STAR-mediated steroidogenesis in immortalised KK1 mouse granulosa cells and MA-10 mouse Leydig tumour cells. Cotreatment with both dibutyryl-cAMP and ciglitazone revealed a dose-dependent, significant increase in progesterone synthesis, Star promoter activity, Star mRNA and STAR protein relative to either compound alone. The overexpression of PPARgamma further increased Star-promoter activity. The ciglitazone-induced activity of the Star-promoter appears to be mediated through the cAMP-response element half-sites located within its proximal 151 bp. Combined treatment with ciglitazone and dibutyryl-cAMP significantly increased the expression and activity of transcriptional pathways impacted by the activator protein-1 family member c-JUN. The present study demonstrates that ciglitazone and dibutyryl-cAMP synergistically enhance STAR expression in MA-10 and KK1 cells. Ciglitazone-activated PPARgamma appears to increase the sensitivity of Leydig and granulosa cells to cAMP stimulation, possibly via upregulation of c-JUN expression.[Abstract] [Full Text] [Related] [New Search]