These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: DnaK-mediated association of ClpB to protein aggregates. A bichaperone network at the aggregate surface. Author: Acebrón SP, Martín I, del Castillo U, Moro F, Muga A. Journal: FEBS Lett; 2009 Sep 17; 583(18):2991-6. PubMed ID: 19698713. Abstract: Intracellular protein aggregates formed under severe thermal stress can be reactivated by the concerted action of the Hsp70 system and Hsp100 chaperones. We analyzed here the interaction of DnaJ/DnaK and ClpB with protein aggregates. We show that aggregate properties modulate chaperone binding, which in turn determines aggregate reactivation efficiency. ClpB binding strictly depends on previous DnaK association with the aggregate. The affinity of ClpB for the aggregate-DnaK complex is low (K(d)=5-10 microM), indicating a weak interaction. Therefore, formation of the DnaK-ClpB bichaperone network is a three step process. After initial DnaJ binding, the cochaperone drives association of DnaK to aggregates, and in the third step, as shown here, DnaK mediates ClpB interaction with the aggregate surface.[Abstract] [Full Text] [Related] [New Search]