These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Origin of photocatalytic activity of nitrogen-doped TiO2 nanobelts.
    Author: Wang J, Tafen de N, Lewis JP, Hong Z, Manivannan A, Zhi M, Li M, Wu N.
    Journal: J Am Chem Soc; 2009 Sep 02; 131(34):12290-7. PubMed ID: 19705915.
    Abstract:
    Experiments combined with the density functional theory (DFT) calculation have been performed to understand the underlying photocatalysis mechanism of the nitrogen-doped titania nanobelts. Nitrogen-doped anatase titania nanobelts are prepared via hydrothermal processing and subsequent heat treatment in NH(3). Both the nitrogen content and the oxygen vacancy concentration increase with increasing the NH(3) treatment temperature. Nitrogen doping leads to an add-on shoulder on the edge of the valence band, the localized N 2p levels above the valence band maximum, and the 3d states of Ti(3+) below the conduction band, which is confirmed by DFT calculation and X-ray photoelectron spectroscopy (XPS) measurement. Extension of the light absorption from the ultraviolet (UV) region to the visible-light region arises from the N 2p levels near the valence band and from the color centers induced by the oxygen vacancies and the Ti(3+) species. Nitrogen doping allows visible-light-responsive photocatalytic activity but lowers UV-light-responsive photocatalytic activity. The visible-light photocatalytic activity originates from the N 2p levels near the valence band. The oxygen vacancies and the associated Ti(3+) species act as the recombination centers for the photoinduced electrons and holes. They reduce the photocatalytic activity although they contribute to the visible light absorbance.
    [Abstract] [Full Text] [Related] [New Search]