These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: OSU-A9, a potent indole-3-carbinol derivative, suppresses breast tumor growth by targeting the Akt-NF-kappaB pathway and stress response signaling.
    Author: Weng JR, Tsai CH, Omar HA, Sargeant AM, Wang D, Kulp SK, Shapiro CL, Chen CS.
    Journal: Carcinogenesis; 2009 Oct; 30(10):1702-9. PubMed ID: 19706645.
    Abstract:
    The molecular heterogeneity of human tumors challenges the development of effective preventive and therapeutic strategies. To overcome this issue, a rational approach is the concomitant targeting of clinically relevant cellular abnormalities with combination therapy or a potent multi-targeted agent. OSU-A9 is a novel indole-3-carbinol derivative that retains the parent compound's ability to perturb multiple components of oncogenic signaling, but provides marked advantages in chemical stability and antitumor potency. Here, we show that OSU-A9 exhibits two orders of magnitude greater potency than indole-3-carbinol in inducing apoptosis in various breast cancer cell lines with distinct genetic abnormalities, including MCF-7, MDA-MB-231 and SKBR3, with the half maximal inhibitory concentration in the range of 1.2-1.8 microM vis-à-vis 200 microM for indole-3-carbinol. This differential potency was paralleled by OSU-A9's superior activity against multiple components of the Akt-nuclear factor-kappa B (NF-kappaB) and stress response signaling pathways. Notable among these were the increased estrogen receptor (ER)-beta/ERalpha expression ratio, reduced expression of HER2 and CXCR4 and the upregulation of aryl hydrocarbon receptor expression and its downstream target NF-E2 p45-regulated factor (Nrf2). Non-malignant MCF-10A cells were resistant to OSU-A9's antiproliferative effects. Daily oral administration of OSU-A9 at 25 and 50 mg/kg for 49 days significantly inhibited MCF-7 tumor growth by 59 and 70%, respectively, without overt signs of toxicity or evidence of induced hepatic biotransformation enzymes. In summary, OSU-A9 is a potent, orally bioavailable inhibitor of the Akt-NF-kappaB signaling network, targeting multiple aspects of breast tumor pathogenesis and progression. Thus, its translational potential for the treatment or prevention of breast cancer warrants further investigation.
    [Abstract] [Full Text] [Related] [New Search]