These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: In vivo somatostatin, vasopressin, and oxytocin synthesis in diabetic rat hypothalamus.
    Author: Fernstrom JD, Fernstrom MH, Kwok RP.
    Journal: Am J Physiol; 1990 Apr; 258(4 Pt 1):E661-6. PubMed ID: 1970706.
    Abstract:
    The in vivo labeling of somatostatin-14, somatostatin-28, arginine vasopressin, and oxytocin was studied in rat hypothalamus after third ventricular administration of [35S]cysteine to streptozotocin-diabetic and normal rats. Immunoreactive somatostatin levels in hypothalamus were unaffected by diabetes, as was the incorporation of [35S]cysteine into hypothalamic somatostatin-14 and somatostatin-28. In contrast, immunoreactive vasopressin levels in hypothalamus and posterior pituitary (and oxytocin levels in posterior pituitary) were below normal in diabetic rats. Moreover, [35S]cysteine incorporation into hypothalamic vasopressin and oxytocin (probably mainly in the paraventricular nucleus because of its proximity to the third ventricular site of label injection) was significantly above normal. The increments in vasopressin and oxytocin labeling were reversed by insulin administration. In vivo cysteine specific activity and the labeling of acid-precipitable protein did not differ between normal and diabetic animals; effects of diabetes on vasopressin and oxytocin labeling were therefore not caused by simple differences in cysteine specific activity. These results suggest that diabetes 1) does not influence the production of somatostatin peptides in hypothalamus but 2) stimulates the synthesis of vasopressin and oxytocin. For vasopressin at least, the increase in synthesis may be a compensatory response to the known increase in its secretion that occurs in uncontrolled diabetes.
    [Abstract] [Full Text] [Related] [New Search]