These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Hypoxia-induced hyperreactivity of pulmonary arteries: role of cyclooxygenase-2, isoprostanes, and thromboxane receptors.
    Author: Delannoy E, Courtois A, Freund-Michel V, Leblais V, Marthan R, Muller B.
    Journal: Cardiovasc Res; 2010 Feb 01; 85(3):582-92. PubMed ID: 19710084.
    Abstract:
    AIMS: This study investigates the role of the cyclooxygenase (COX)/prostanoid pathway in chronic hypoxia-induced hyperreactivity of pulmonary arteries. METHODS AND RESULTS: Pulmonary arteries were removed from normoxic or hypoxic (0.5 atm for 21 days) mice and studied for protein expression/localization of COX-1, COX-2, and thromboxane A2 (TXA2)-synthase, release of TXA2, prostacyclin (PGI2) and the isoprostane 8-iso-prostaglandin F2alpha (8-iso-PGF2alpha), and vasomotor responses. COX-2 expression was increased in all layers of pulmonary arteries from hypoxic mice. In contrast, COX-1 expression was not significantly modified following chronic hypoxia, whereas TXA2-synthase was decreased. Chronic hypoxia differentially affected prostanoid release from pulmonary arteries: TXA2 secretion was not significantly modified; PGI2 secretion was decreased, whereas 8-iso-PGF2alpha secretion was increased. A selective COX-2 inhibitor decreased 8-iso-PGF2alpha release. Arachidonic acid elicited an endothelium- and COX-1-dependent relaxation in pulmonary arteries from normoxic mice. In contrast, arachidonic acid induced an endothelium-independent contraction in pulmonary arteries from hypoxic mice that was partially reduced by catalase, COX-1, COX-2, or TXA2-synthase inhibitors and was totally abolished by blockade of the thromboxane (TP) receptor. Hyperresponsiveness to phenylephrine (PE) of pulmonary arteries from hypoxic mice was also decreased by COX-2 inhibitors, TP receptor antagonists or catalase, but not by TXA2-synthase inhibitors. Finally, 8-iso-PGF2alpha induced a TP receptor-dependent contraction in pulmonary arteries and markedly potentiated the contractile response to PE. CONCLUSION: Chronic hypoxia up-regulates COX-2 expression, increases 8-iso-PGF2alpha release, and shifts arachidonic acid-induced, endothelium-dependent relaxation to an endothelium-independent and TP receptor-dependent contraction in pulmonary arteries. COX-2-dependent production of 8-iso-PGF2alpha, by activating TP receptors, participates in hypoxia-induced hyperreactivity of pulmonary arteries.
    [Abstract] [Full Text] [Related] [New Search]