These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Calpain-mediated degradation of reversibly oxidized protein-tyrosine phosphatase 1B.
    Author: Trümpler A, Schlott B, Herrlich P, Greer PA, Böhmer FD.
    Journal: FEBS J; 2009 Oct; 276(19):5622-33. PubMed ID: 19712109.
    Abstract:
    Protein-tyrosine phosphatases (PTPs) are regulated by reversible inactivating oxidation of the catalytic-site cysteine. We have previously shown that reversible oxidation upon UVA irradiation is followed by calpain-mediated PTP degradation. Here, we address the mechanism of regulated cleavage and the physiological function of PTP degradation. Reversible oxidation of PTP1B in vitro strongly facilitated the association with calpain and led to greatly increased calpain-dependent inactivating cleavage. Both oxidation-induced association and cleavage depended exclusively on the presence of the catalytic (reversibly oxidized) cysteine residue 215. A major cleavage site was identified preceding amino acid position Ala77. In calpain-deficient cells, insulin signaling was apparently diminished, consistent with a possible role for calpain in removing a negative regulator of insulin signaling. Reversibly oxidized PTP1B may be a target of calpain in this context.
    [Abstract] [Full Text] [Related] [New Search]