These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Low concentrations of the brominated flame retardants BDE-47 and BDE-99 induce synergistic oxidative stress-mediated neurotoxicity in human neuroblastoma cells. Author: Tagliaferri S, Caglieri A, Goldoni M, Pinelli S, Alinovi R, Poli D, Pellacani C, Giordano G, Mutti A, Costa LG. Journal: Toxicol In Vitro; 2010 Feb; 24(1):116-22. PubMed ID: 19720130. Abstract: Polybrominated diphenyl ether (PBDE) flame retardants have become widespread environmental contaminants. The highest body burden has been found in toddlers and infants, due to their exposure through breast milk and house dust, and the current concern for potential adverse health effects of PBDEs relates to their developmental neurotoxicity. The mechanisms underlying the neurotoxicity of PBDEs are largely not understood, though there is evidence that PBDEs may elicit oxidative stress. In this study, two different mathematical models were used to evaluate the interaction between BDE-47 and BDE-99 on viability of neuronal cells. The combined exposure to these compounds induced synergistic effects at concentrations of BDE-47 below its threshold doses, and in a wide range of BDE-99 concentrations below its IC(50). In contrast, at concentrations of BDE-47 near its IC(50) value, and in a wide range of BDE-99 concentrations, antagonistic effects were observed. The interactions observed on cell viability were confirmed by an assessment of induction of oxidative stress. The finding that co-exposure to BDE-47 and BDE-99 could induce synergistic neurotoxic effects, in particular at low doses of BDE-47, is of much toxicological interest, as humans are exposed to mixtures of PBDEs, most notably tetra- and penta-BDE congeners.[Abstract] [Full Text] [Related] [New Search]