These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Monoiron hydrogenase catalysis: hydrogen activation with the formation of a dihydrogen, Fe-H(delta-)...H(delta+)-O, bond and methenyl-H4MPT+ triggered hydride transfer. Author: Yang X, Hall MB. Journal: J Am Chem Soc; 2009 Aug 12; 131(31):10901-8. PubMed ID: 19722671. Abstract: A fully optimized resting state model with a strong Fe-H(delta-)...H(delta+)-O dihydrogen bond for the active site of the third type of hydrogenase, [Fe]-hydrogenase, is proposed from density functional theory (DFT) calculations on the reformulated active site from the recent X-ray crystal structure study of C176A (Cys176 was mutated to an alanine) mutated [Fe]-hydrogenase in the presence of dithiothreitol. The computed vibrational frequencies for this new active site model possess an average error of only +/-4.5 cm(-1) with respect to the wild-type [Fe]-hydrogenase. Based on this resting state model, a new mechanism with the following unusual aspects for hydrogen activation catalyzed by [Fe]-hydrogenase is also proposed from DFT calculations. (1) Unexpected dual pathways for H(2) cleavage with proton transfer to Cys176-sulfur or 2-pyridinol's oxygen for the formation and regeneration of the resting state with an Fe-H(delta-)...H(delta+)-O dihydrogen bond before the appearance of methenyl-H(4)MPT(+) (MPT(+)). (2) The strong dihydrogen bond in this resting state structure prevents D(2)/H(2)O exchange. (3) Only upon the arrival of MPT(+) with its strong hydride affinity can D(2)/H(2)O exchange take place as the arrival of MPT(+) triggers the breaking of the strong Fe-H(delta-)...H(delta+)-O dihydrogen bond by taking a hydride from the iron center and initiating the next H(2) (D(2)) cleavage. This new mechanism is completely different than that previously proposed (J. Am. Chem. Soc. 2008, 130, 14036) which was based on an active site model related to an earlier crystal structure. Here, Fe's role is H(2) capture and hydride formation without MPT(+) while the pyridone's special role involves the protection of the hydride by the dihydrogen bond.[Abstract] [Full Text] [Related] [New Search]