These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Magnetic poly(PEGMA-MAA) nanoparticles: photochemical preparation and potential application in drug delivery. Author: Sun HW, Zhang LY, Zhu XJ, Wang XF. Journal: J Biomater Sci Polym Ed; 2009; 20(12):1675-86. PubMed ID: 19723435. Abstract: Poly(PEGMA-MAA)-coated superparamagnetic nanoparticles were synthesized by in situ photochemical polymerization in magnetite aqueous suspension under UV irradiation. The magnetic poly(PEGMA-MAA) nanoparticles were characterized by Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), photo correlation spectroscopy (PCS) and vibration sample magnetometry (VSM), respectively. The results indicated that the magnetic poly(PEGMA-MAA) nanoparticles were of regularly spherical shape and remained monodisperse. The average size measured in aqueous media was 96.4 nm, which was much bigger than that in dry state, the nanoparticles behaved superparamagnetic with saturated magnetization of 64.8 emu/g, the zeta potential was -18.3 mV at physiological pH 7.2, and the magnetic poly(PEGMA-MAA) nanoparticles had a high stability in vitro. A typical anti-inflammatory drug, ibuprofen, was used for drug loading, and the release behavior of ibuprofen in a simulated body fluid (SBF, pH 7.4) was studied. The results indicated that these novel magnetic nanoparticles had a high drug-loading capacity and favorable release properties for ibuprofen. The magnetic poly(PEGMA-MAA) nanoparticles are very promising for application in drug delivery.[Abstract] [Full Text] [Related] [New Search]