These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: One year of continuous treatment with haloperidol or clozapine fails to induce a hypersensitive response of caudate putamen neurons to dopamine D1 and D2 receptor agonists. Author: Jiang LH, Kasser RJ, Altar CA, Wang RY. Journal: J Pharmacol Exp Ther; 1990 Jun; 253(3):1198-205. PubMed ID: 1972751. Abstract: In a "blind" experimental design, the sensitivity of caudate-putamen (CPu) cells to the selective dopamine (DA) D1 receptor agonist SKF-38393 and D2 receptor agonist LY171555 (quinpirole) in rats treated with either haloperidol (HAL), clozapine or tap water for 1 year was compared using the techniques of single cell recording and microiontophoresis. Although the maximum binding value for D2 receptors was elevated in chronic HAL-treated rats, there was no sign of electrophysiological supersensitivity of CPu neurons to the selective DA D1 and D2 receptor agonists. CPu cells were subsensitive to LY-171555 in HAL-treated rats without a drug withdrawal period. This suggests that residual HAL in the rat brain actively blocked the D2 DA receptors. In contrast, in clozapine-treated rats with or without a drug withdrawal period, the sensitivity of CPu cells to either the D1 or D2 agonists was not altered. Coadministration of SKF-38393 and LY-171555 onto the CPu neurons primarily produced an additive effect and only two cells both from the HAL group showed a synergistic action. The majority of CPu cells failed to respond to iontophoretic application of CCK-8S in either the control or antipsychotic drug-treated rats. If these findings can be extended to humans, they do not support the view that tardive dyskinesia is the result of CPu DA receptor supersensitivity.[Abstract] [Full Text] [Related] [New Search]