These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Brain size and brain organization of the whale shark, Rhincodon typus, using magnetic resonance imaging. Author: Yopak KE, Frank LR. Journal: Brain Behav Evol; 2009; 74(2):121-42. PubMed ID: 19729899. Abstract: Very little is known about the brain organization of the suction filter feeder, Rhincodon typus, and how it compares to other orectolobiforms in light of its specialization as a plankton-feeder. Brain size and overall brain organization was assessed in two specimens of R. typus in relation to both phylogeny and ecology, using magnetic resonance imaging (MRI). In comparison to over 60 other chondrichthyan species, R. typus demonstrated a relatively small brain for its body size (expressed in terms of encephalization quotients and residuals), similar to the lamniforms Carcharodon carcharias, Cetorhinus maximus, and Carcharias taurus. R. typus possessed a relatively small telencephalon with some development of the dorsal pallium, which was suggestive of moderate social behavior, in addition to a relatively large diencephalon and a relatively reduced mesencephalon. The most notable characteristic of the brain of Rhincodon was a large and highly foliated cerebellum, one of the largest cerebellums within the chondrichthyan clade. Early development of the brain was qualitatively assessed using an in situ MRI scan of the brain and chondrocranium of a neonate specimen of R. typus. There was evidence that folding of the cerebellar corpus appeared in early development, although the depth and number of folds might vary ontogenetically in this species. Hierarchical cluster analysis and multidimensional scaling ordinations showed evidence of convergent evolution with the basking shark, Cetorhinus maximus, another large-bodied filter feeding elasmobranch, supporting the claim that organization of the brain is more similar in species with analogous but independently evolved lifestyles than those that share taxonomic classification.[Abstract] [Full Text] [Related] [New Search]