These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Purkinje cell compartmentation of the cerebellum of microchiropteran bats. Author: Kim JY, Marzban H, Chung SH, Watanabe M, Eisenman LM, Hawkes R. Journal: J Comp Neurol; 2009 Nov 10; 517(2):193-209. PubMed ID: 19731335. Abstract: Transverse boundaries divide the mammalian cerebellar cortex into transverse zones, and within each zone the cortex is further subdivided into a symmetrical array of parasagittal stripes. This topography is highly conserved across the Mammalia. Bats have a remarkable cerebellum with presumed adaptations to flight and to echolocation, but nothing is known of its compartmentation. We have therefore used two Purkinje cell compartmentation antigens, zebrin II/aldolase C and phospholipase Cbeta4, to reveal the topography of the cerebellum in microchiropteran bats. Three species of bat were studied, Lasiurus cinereus, Lasionycteris noctivagans, and Eptesicus fuscus. A reproducible pattern of zones and stripes was revealed that is similar across the three species. The architecture of the bat cerebellum conforms to the ground plan of other mammals. However, two exceptions to the highly conserved mammalian architectural plan were revealed. First, many Purkinje cells in lobule I express zebrin II. A zebrin II-immunopositive lobule I has not been seen previously in mammals but is characteristic of the avian cerebellum. Second, lobules VI-VII comprise the large central zone. Within the central zone two subdomains are evident, a small anterior subdomain (lobule VI) in which Purkinje cells are predominantly zebrin II-immunopositive/PLCbeta4-immunonegative, as in other mammals, and a posterior subdomain (lobule VII), in which alternating zebrin II/phospholipase Cbeta4 stripes are prominent.[Abstract] [Full Text] [Related] [New Search]