These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The effect of glucocorticoids on mouse oocyte in vitro maturation and subsequent fertilization and embryo development. Author: González R, Ruiz-León Y, Gomendio M, Roldan ER. Journal: Toxicol In Vitro; 2010 Feb; 24(1):108-15. PubMed ID: 19733225. Abstract: Increased glucocorticoid levels, due to medical therapy or stress-related, may affect reproduction via the hypothalamus-pituitary-axis or directly at the oocyte level. We examined the effects of natural (corticosterone) or synthetic (dexamethasone) glucocorticoids on mouse oocyte maturation and underlying changes in extracellular signal-regulated kinase (ERK) phosphorylation patterns. Fertilization and progression up to the blastocyst stage were also evaluated. Oocytes were exposed to corticosterone or dexamethasone (0, 0.25, 2.5, 25 or 250microM) for 17h during in vitro maturation. After maturation, ERK-1/2 activation in oocytes was assessed by SDS-PAGE and immunoblotting, and fertilization and developmental capacity were examined in vitro. Corticosterone exposure during oocyte maturation significantly decreased progression to metaphase II, fertilization and embryo development at the highest concentration. Corticosterone caused a concentration-dependent inhibition of ERK-1/2 activation, with the highest concentration resulting in considerable inhibition of oocyte ERK-1/2 phosphorylation and no blastocyst development. In contrast, dexamethasone had no effect on maturation, fertilization and cleavage, and no effect was seen on ERK-1/2 phosphorylation. Based on these in vitro findings, high glucocorticoid levels may have consequences for subsequent development, although a short exposure to physiologic or stress-related glucocorticoid levels may not represent a hazard to meiosis progression of the oocyte.[Abstract] [Full Text] [Related] [New Search]