These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: One-dimensional imidazole aggregate in aluminium porous coordination polymers with high proton conductivity. Author: Bureekaew S, Horike S, Higuchi M, Mizuno M, Kawamura T, Tanaka D, Yanai N, Kitagawa S. Journal: Nat Mater; 2009 Oct; 8(10):831-6. PubMed ID: 19734885. Abstract: The development of anhydrous proton-conductive materials operating at temperatures above 80 degrees C is a challenge that needs to be met for practical applications. Herein, we propose the new idea of encapsulation of a proton-carrier molecule--imidazole in this work--in aluminium porous coordination polymers for the creation of a hybridized proton conductor under anhydrous conditions. Tuning of the host-guest interaction can generate a good proton-conducting path at temperatures above 100 degrees C. The dynamics of the adsorbed imidazole strongly affect the conductivity determined by (2)H solid-state NMR. Isotope measurements of conductivity using imidazole-d4 showed that the proton-hopping mechanism was dominant for the conducting path. This work suggests that the combination of guest molecules and a variety of microporous frameworks would afford highly mobile proton carriers in solids and gives an idea for designing a new type of proton conductor, particularly for high-temperature and anhydrous conditions.[Abstract] [Full Text] [Related] [New Search]