These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Differential regulation of E-cadherin and alpha-smooth muscle actin by BMP 7 in human renal proximal tubule epithelial cells and its implication in renal fibrosis.
    Author: Veerasamy M, Nguyen TQ, Motazed R, Pearson AL, Goldschmeding R, Dockrell ME.
    Journal: Am J Physiol Renal Physiol; 2009 Nov; 297(5):F1238-48. PubMed ID: 19741012.
    Abstract:
    Chronic kidney diseases are characterized by progressive tubulointerstitial fibrosis, and TGFbeta1 plays a crucial role in its development. Bone morphogenic protein 7 (BMP 7), another member of the TGF superfamily, antagonized the profibrotic effects of TGFbeta1, including epithelial mesenchymal transition and E-cadherin loss, in the previous studies from animal models. We investigated the effect of BMP 7 on TGFbeta1-mediated E-cadherin loss in two different transformed human adult proximal tubule epithelia. We found that BMP 7 not only failed to prevent TGFbeta1-mediated E-cadherin loss but itself downregulated E-cadherin levels and that it had an additive effect with TGFbeta1 in inducing E-cadherin loss. The downregulation of E-cadherin by BMP 7 was mediated through the Smad1/5 pathway. BMP 7-mediated E-cadherin loss was not followed by de novo alpha-smooth muscle actin (alpha-SMA) expression (a marker of myofibroblastic phenotype), which was due to the concurrent induction of Inhibitor of DNA binding 1 (Id1, a basic helix loop helix class transcriptional regulator) through a non-Smad pathway. Concurrent treatment of BMP 7 and TGFbeta1 prevented TGFbeta1-mediated alpha-SMA induction. In summary, our results suggest that E-cadherin loss, the key feature of epithelial mesenchymal transition, will not necessarily be followed by total phenotype change; rather, cells may undergo some loss of phenotypic marker in a ligand-dependent manner and participate in reparative processes. The inhibition of de novo expression of alpha-SMA could explain the antifibrotic effect of BMP 7. Id1 might play a crucial role in maintaining proximal tubule epithelial cell phenotype and its signaling regulation could be a potential therapeutic target.
    [Abstract] [Full Text] [Related] [New Search]