These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The importance of reductive mechanisms for intestinal uptake of iron from ferric maltol and ferric nitrilotriacetic acid (NTA). Author: Barrand MA, Hider RC, Callingham BA. Journal: J Pharm Pharmacol; 1990 Apr; 42(4):279-82. PubMed ID: 1974298. Abstract: Intestinal iron absorption is thought to proceed with iron mainly in the ferrous form, yet the novel iron complex, ferric maltol is an effective oral preparation. Although possessing a high oil: water partition coefficient, ferric maltol does not diffuse across the intestine but donates its iron to the endogenous uptake system. Reduction of the ferric iron in the gut lumen appears to precede iron uptake both from ferric maltol and from ferric nitrilotriacetic acid (NTA) which is a non-penetrating iron ligand. Uptake of radiolabelled iron (59Fe) into isolated fragments of rat small intestine was inhibited by the ferrous chelator, bathophenanthroline sulphonate (BPS) and enhanced at low concentrations by the reducing agent ascorbic acid. Spectrophotometric evidence was obtained that ferrous ions are generated from these ferric complexes in the presence of ascorbic acid and other reducing agents. The rate of ferrous ion formation was independent of ferric maltol concentration at low ascorbic acid levels and decreased with increasing ferric maltol concentration at higher levels of ascorbate. Maltol has a high affinity for ferric ions and may delay reduction at higher concentrations. By contrast, a higher rate of ferrous ion generation was seen with ferric NTA and this increased with iron ligand concentration. Washings from the intestinal lumen also brought about ferrous ion formation from these ferric ligands. Gel filtration revealed these reducing factors to be of low molecular weight. The washings, however, interfered with 59Fe uptake into the isolated fragments, but when reducing fractions only from the filtered washings were used, enhanced iron uptake was seen.(ABSTRACT TRUNCATED AT 250 WORDS)[Abstract] [Full Text] [Related] [New Search]