These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Rg1 protects the MPP+-treated MES23.5 cells via attenuating DMT1 up-regulation and cellular iron uptake.
    Author: Xu H, Jiang H, Wang J, Xie J.
    Journal: Neuropharmacology; 2010 Feb; 58(2):488-94. PubMed ID: 19744503.
    Abstract:
    Ginsenoside-Rg1 is one of the pharmacologically active component isolated from ginseng. Our previous study observed the protective effect of Rg1 on iron accumulation in the substantia nigra (SN) in 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP)-treated Parkinson's disease (PD) mice. However, the mechanisms of this neuroprotective effect of Rg1 are unknown. In this study, we elucidated possible mechanisms for this effect using 1-methyl-4-phenylpyridinium (MPP(+))-treated MES23.5 cells. Previous study showed MPP+ treatment induced up-regulation of divalent metal transporter 1 without iron responsive element (DMT1-IRE) in MES23.5 cells. In the present study, we observed that pretreatment with Rg1 could inhibit MPP+-induced up-regulation of DMT1-IRE in MES23.5 cells. Up-regulation of DMT1-IRE by MPP+ treatment was associated with ROS production and translocation of nuclear factor-kappaB (NF-kappaB) to nuclei, both of which were significantly inhibited by Rg1 pretreatment. The role of ROS and NF-kappaB in the up-regulation of DMT1-IRE was supported by application of an antioxidant NAC and BAY 11-7082, an inhibitor of IkappaBalpha phosphorylation. Furthermore, we also showed Rg1 could decrease DMT1-mediated ferrous iron uptake and iron-induced cell damage by inhibiting the up-regulation of DMT1-IRE. These results indicate that Rg1 protected the MPP+-treated MES23.5 cells via attenuating DMT1-IRE up-regulation likely through inhibition of ROS-NF-kappaB pathway; Attenuation of DMT1-IRE expression decreased the iron influx and iron-induced oxidative stress.
    [Abstract] [Full Text] [Related] [New Search]