These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Bicarbonate transport by the human pancreatic ductal cell line HPAF. Author: Demeter I, Hegyesi O, Nagy AK, Case MR, Steward MC, Varga G, Burghardt B. Journal: Pancreas; 2009 Nov; 38(8):913-20. PubMed ID: 19745779. Abstract: OBJECTIVES: The human pancreatic duct cell line, HPAF, has been shown previously to secrete Cl(-) in response to Ca(2+)-mobilizing stimuli. Our aim was to assess the capacity of HPAF cells to transport and secrete HCO3(-). METHODS: HPAF cells were grown as confluent monolayers on permeable supports. Short-circuit current was measured by voltage clamp. Intracellular pH (pHi) was measured by microfluorometry in cells loaded with 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF). RESULTS: In HCO3(-)-free solutions, ATP-evoked changes in short-circuit current were inhibited by bumetanide, and the recovery of pHi from acid loading was abolished by 5-(N-ethyl-N-isopropyl)-amiloride (EIPA). In the presence of HCO3(-), ATP-evoked secretion was no longer inhibited by bumetanide, and there was a strong EIPA-insensitive recovery from acid loading, which was inhibited by 4,4'-diisothiocyanatodihydrostilbene-2,2'-disulfonate (H2DIDS). ATP, but not forskolin, stimulated HCO3(-) efflux from the cells. CONCLUSIONS: In the absence of HCO3(-), ATP-evoked Cl(-) secretion is driven by a basolateral Na(+)-K(+)-2Cl(-) cotransporter, and pH(i) is regulated by apical and basolateral Na(+)/H(+) exchangers. In the presence of HCO3(-), ATP-evoked secretion is sustained in the absence of Na(+)-K(+)-2Cl(-) cotransporter activity and is probably driven by basolateral Na(+)-HCO3(-) cotransport.[Abstract] [Full Text] [Related] [New Search]