These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Anopheles gambiae alkaline phosphatase is a functional receptor of Bacillus thuringiensis jegathesan Cry11Ba toxin.
    Author: Hua G, Zhang R, Bayyareddy K, Adang MJ.
    Journal: Biochemistry; 2009 Oct 20; 48(41):9785-93. PubMed ID: 19747003.
    Abstract:
    Alkaline phosphatases (ALPs, EC 3.1.3.1) isolated from lepidopteran and dipteran species are identified as receptors for Cry1Ac and Cry11Aa toxins, respectively [Jurat-Fuentes, J. L., and Adang, M. J. (2004) Eur. J. Biochem. 7, 3127-3135; Fernandez, L. E., et al. (2006) Biochem. J. 396, 77-84]. In our study, an alkaline phosphatase cDNA (AgALP1) was cloned from the midgut of Anopheles gambiae larvae. The encoded 63 kDa protein has a predicted glycosylphosphatidylinositol (GPI) anchor omega-site ((526)Asp), an N-glycosylation site ((239)Asn-Leu-Thr), and an O-glycosylation site ((312)Ser). AgALP1(t) was expressed in Escherichia coli and used to prepare antiserum and to analyze the interaction of AgALP with mosquitocidal Cry11Ba toxin. Anti-AgALP serum localized AgALP to the apical brush border in the anterior and posterior midgut of larvae and detected a 65 kDa species on a blot of brush border membrane vesicles (BBMVs) protein prepared from larvae. ALP activity was released from larval BBMVs prepared by phosphatidylinositol-specific phospholipase C (PIPLC) treatment, and after separation by two-dimensional gel electrophoresis and blotting, a chain of doublet spots at 65 kDa was detected by anti-AgALP. A subset of these doublet spots bound Cry11Ba on a reprobed blot. Heterologously expressed AgALP1(t) bound [(125)I]Cry11Ba on dot blots and reduced the level of binding of [(125)I]Cry11Ba to brush border membrane vesicles by 41%, a percentage comparable to that of unlabeled Cry11Ba and aminopeptidase AgAPN2(t1) peptide. AgALP1(t) binds Cry11Ba toxin with a high affinity (23.9 nM) and shares a binding site on Cry11Ba with AgAPN2(t1). In bioassays against An. gambiae larvae, the presence of AgALP1(t) reduced larval mortality from 78 to 8%. We conclude that AgALP1 is a binding protein and a functional receptor for Cry11Ba toxin.
    [Abstract] [Full Text] [Related] [New Search]