These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Acoustic behaviour of echolocating porpoises during prey capture.
    Author: Deruiter SL, Bahr A, Blanchet MA, Hansen SF, Kristensen JH, Madsen PT, Tyack PL, Wahlberg M.
    Journal: J Exp Biol; 2009 Oct 01; 212(19):3100-7. PubMed ID: 19749102.
    Abstract:
    Porpoise echolocation has been studied previously, mainly in target detection experiments using stationed animals and steel sphere targets, but little is known about the acoustic behaviour of free-swimming porpoises echolocating for prey. Here, we used small onboard sound and orientation recording tags to study the echolocation behaviour of free-swimming trained porpoises as they caught dead, freely drifting fish. We analysed porpoise echolocation behaviour leading up to and following prey capture events, including variability in echolocation in response to vision restriction, prey species, and individual porpoise tested. The porpoises produced echolocation clicks as they searched for the fish, followed by fast-repetition-rate clicks (echolocation buzzes) when acquiring prey. During buzzes, which usually began when porpoises were about 1-2 body lengths from prey, tag-recorded click levels decreased by about 10 dB, click rates increased to over 300 clicks per second, and variability in body orientation (roll) increased. Buzzes generally continued beyond the first contact with the fish, and often extended until or after the end of prey handling. This unexplained continuation of buzzes after prey capture raises questions about the function of buzzes, suggesting that in addition to providing detailed information on target location during the capture, they may serve additional purposes such as the relocation of potentially escaping prey. We conclude that porpoises display the same overall acoustic prey capture behaviour seen in larger toothed whales in the wild, albeit at a faster pace, clicking slowly during search and approach phases and buzzing during prey capture.
    [Abstract] [Full Text] [Related] [New Search]