These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Ab initio and DFT study of the conformational energy hypersurface of cyclic Gly-Gly-Gly.
    Author: Tosso RD, Zamora MA, Suvire FD, Enriz RD.
    Journal: J Phys Chem A; 2009 Oct 08; 113(40):10818-25. PubMed ID: 19754096.
    Abstract:
    The multidimensional conformational potential energy hypersurface (PEHS) of cyclic Gly-Gly-Gly (1,4,7-triazonane-2,5,8-trione) was comprehensively investigated at the Hartree-Fock (RHF/6-31G(d)) level of theory. The equilibrium structures, their relative stability, and the transition state (TS) structures involved in the conformational interconversion pathways were analyzed. aug-cc-pVTZ//B3LYP/6-311++G** single point calculations predict a trans-cis-cis conformation as the energetically preferred form for this compound. However, all of the levels of theory employed here predicted that two forms, a trans-cis-cis and a cis-cis-cis (crown), of conformers contribute significantly to the equilibrium mixture at room temperature. The conformational interconversion between the global minimum and the symmetric cis-cis-cis crown form requires 12.49 kcal/mol at the RHF 6-31G(d) level of theory, whereas the conformational interconversion between the cis-cis-cis crown and cis-cis-cis boat form requires 18.70 kcal/mol. An exploratory topological analysis of the PEHS was also carried out. Our results allow us to form a concise idea about the internal intricacies of the PEHSs of these cyclic tripeptides, describing the conformations as well as the conformational interconversion processes in these hypersurfaces.
    [Abstract] [Full Text] [Related] [New Search]