These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Enhancement of hydrogen adsorption in metal-organic frameworks by the incorporation of the sulfonate group and Li cations. A multiscale computational study. Author: Mavrandonakis A, Klontzas E, Tylianakis E, Froudakis GE. Journal: J Am Chem Soc; 2009 Sep 23; 131(37):13410-4. PubMed ID: 19754188. Abstract: By means of ab initio methods, the effect on the H(2) storage ability of a newly proposed organic linker for IRMOF-14 has been studied. The linker comprises a negatively charged sulfonate (-SO(3)(-1)) group in combination with a Li cation. It is found that these two charged groups significantly increase the interaction energy between the hydrogen molecules and the new proposed organic linker of the MOF. The substituted group of the linker may host up to six hydrogen molecules with an average interaction energy of 1.5 kcal/mol per H(2) molecule. This value is three times larger than the binding energy over the bare linker that has been obtained from DFT calculations. GCMC atomistic simulations verified that the proposed material can be qualified among the highest adsorbing materials for volumetric capture of H(2), especially at ambient conditions. This functionalization strategy can be applied in many different MOF structures to enhance their storage abilities.[Abstract] [Full Text] [Related] [New Search]