These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A novel alpha-amylase from the cyanobacterium Nostoc sp. PCC 7119. Author: Reyes-Sosa FM, Molina-Heredia FP, De la Rosa MA. Journal: Appl Microbiol Biotechnol; 2010 Mar; 86(1):131-41. PubMed ID: 19756583. Abstract: Little information is yet available on the alpha-amylases of cyanobacteria. Here, the presence of an alpha-amylase in the cyanobacterium Nostoc sp. PCC 7119 is first demonstrated. A gene (amy1) encoding a cytoplasmic alpha-amylase (Amy1) protein has been identified, cloned, and overexpressed in Escherichia coli cells. The recombinant protein is a 56.7-kDa monomer, which has been purified to electrophoretic homogeneity by affinity chromatography. The substrate specificity and end product analyses confirm that it is a calcium-dependent alpha-amylase enzyme, which exhibits its maximum activity at 31 degrees C and at pH between 6.5 and 7.5. The Amy1 protein breaks down mainly starch, is also able to cleave glycogen and dextrin, and exhibits no activity against xylan or pullulan. So the enzyme cannot efficiently attack the maltodextrins with degrees of polymerization below that of maltooctaose. Maltotriose, maltose, and maltotetraose are the major products of the enzymatic reaction with starch as substrate. The enzyme shows a very high turnover number against soluble potato starch (3,420 +/- 270 s(-1)), as compared with other alpha-amylases reported in the literature. The high catalytic efficiency and relatively low optimum temperature of the Nostoc Amy1 protein make this previously unexplored group of cyanobacterial enzymes of great interest for further physiological studies and industrial applications.[Abstract] [Full Text] [Related] [New Search]