These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Long-term effect of MPTP in the mouse brain in relation to aging: neurochemical and immunocytochemical analysis.
    Author: Date I, Felten DL, Felten SY.
    Journal: Brain Res; 1990 Jun 11; 519(1-2):266-76. PubMed ID: 1975765.
    Abstract:
    The long-term effect of the parkinsonism-inducing neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on central monoaminergic neurons in young (2-3 months) and aging (12 months) C57BL/6 mice has been studied using neurochemical and immunocytochemical techniques. MPTP treatment (4 x 20 mg/kg i.p. given 12 h apart) resulted in significant depletion of dopamine (DA) concentration in the striatum, substantia nigra, nucleus accumbens, and olfactory tubercle 1 week after treatment in both young and aging mice. Although a decreased DA concentration in the ventral tegmental area was not seen in young mice, aging mice did show a significant decrease. The extent of decrease of DA concentration was greater in aging mice than in young mice in all areas investigated except in dorsal striatum. The long-term effect of MPTP on DA neurons in young mice included considerable recovery of DA concentration in both nigrostriatal and mesolimbic DA systems following the initial profound depletion; such recovery was minimal in aging mice, even 3 months after MPTP treatment. In young mice treated with MPTP, no significant change of norepinephrine (NE) or serotonin (5-HT) concentration was observed in any area investigated while a significant decrease of NE and 5-HT concentration was seen in several brain areas investigated in aging mice. Immunocytochemical analysis revealed that the MPTP injection resulted in marked disappearance of tyrosine hydroxylase (TH)-immunoreactive (IR) fibers in striatum of both young and aging mice 1 week following treatment. Partial recovery of TH-IR fibers was seen 5 weeks or 3 months after MPTP treatment in young mice, while no such apparent recovery was seen in aging mice. Aging mice also showed significant decrease in the number of TH-positive cell bodies in the substantia nigra and ventral tegmental area through all periods investigated, while such a significant decrease was only seen in the substantia nigra of young mice 1 week after treatment. We conclude that aging mice are more sensitive to MPTP and show more widespread damage to the monoaminergic systems than young mice, suggesting that MPTP-treated aging mice provide a more useful model for studying anatomical and neurochemical characteristics of Parkinson's disease than young mice.
    [Abstract] [Full Text] [Related] [New Search]