These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Fluorescent labeling of both GABAergic and glycinergic neurons in vesicular GABA transporter (VGAT)-venus transgenic mouse.
    Author: Wang Y, Kakizaki T, Sakagami H, Saito K, Ebihara S, Kato M, Hirabayashi M, Saito Y, Furuya N, Yanagawa Y.
    Journal: Neuroscience; 2009 Dec 15; 164(3):1031-43. PubMed ID: 19766173.
    Abstract:
    Inhibitory neurons play important roles in a number of brain functions. They are composed of GABAergic neurons and glycinergic neurons, and vesicular GABA transporter (VGAT) is specifically expressed in these neurons. Since the inhibitory neurons are scattered around in the CNS, it is difficult to identify these cells in living brain preparations. The glutamate decarboxylase (GAD) 67-GFP knock-in mouse has been widely used for the identification of GABAergic neurons, but their GAD67 expression was decreased compared to the wild-type mice. To overcome such a problem and to highlight the function and morphology of inhibitory neurons, we generated four lines of VGAT-Venus transgenic mice (lines #04, #29, #39 and #49) expressing Venus fluorescent protein under the control of mouse VGAT promoter. We found higher expression level of Venus transcripts and proteins as well as brighter fluorescent signal in line #39 mouse brains, compared to brains of other lines examined. By Western blots and spectrofluorometric measurements of forebrain, the line #39 mouse showed stronger GFP immunoreactivity and brighter fluorescent intensity than the GAD67-GFP knock-in mouse. In addition, Venus was present not only in somata, but also in neurites in the line #39 mouse by histological studies. In situ hybridization analysis showed that the expression pattern of Venus in the line #39 mouse was similar to that of endogenous VGAT. Double immunostaining analysis in line #39 mouse showed that Venus-expressing cells are primarily immunoreactive for GABA in cerebral cortex, hippocampus and cerebellar cortex and for GABA or glycine in dorsal cochlear nucleus. These results demonstrate that the VGAT-Venus line #39 mouse should be useful for studies on function and morphology of inhibitory neurons in the CNS.
    [Abstract] [Full Text] [Related] [New Search]