These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Formation of high molecular weight dermatan sulfate proteoglycan in bovine aortic endothelial cell cultures. Evidence for transglutaminase-catalyzed cross-linking to fibronectin. Author: Kinsella MG, Wight TN. Journal: J Biol Chem; 1990 Oct 15; 265(29):17891-8. PubMed ID: 1976631. Abstract: Three glucuronate-rich dermatan sulfate proteoglycan (DS-PG) subclasses were isolated and previously characterized from bovine aortic endothelial cell cultures (Kinsella, M. G., and Wight, T. N. (1988) J. Biol. Chem. 263, 19222-19231). In the present study, pulse-chase experiments indicate that the DS-PG of highest apparent Mr (approximately 1 x 10(6)), denoted previously as HMW-DS, is a relatively stable component of the endothelial extracellular matrix and is formed at the expense of lower Mr DS-PG species. The formation of HMW-DS is reduced in a dose-dependent manner in the presence of dansylcadaverine, an inhibitor of transglutaminase-catalyzed protein cross-linking, but not when the activity of other cross-linking enzymes such as lysyl oxidase is inhibited. The putative DS-PG precursor to HMW-DS accumulates during inhibition of cross-linking only when lysosomal degradation is also inhibited by ammonium chloride, suggesting that the precursor is degraded rapidly in the absence of cross-linking. HMW-DS is precipitable from endothelial cell monolayer extracts with antibodies against fibronectin, a known transglutaminase substrate. Thus, we conclude that the stability of HMW-DS in the subendothelial matrix in culture depends upon the cross-linking of a low Mr DS-PG precursor to matrical protein(s), including fibronectin, resulting in the formation of a DS-PG subclass of high apparent molecular mass.[Abstract] [Full Text] [Related] [New Search]