These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Three-dimensional bioluminescence tomography based on Bayesian approach. Author: Feng J, Jia K, Qin C, Yan G, Zhu S, Zhang X, Liu J, Tian J. Journal: Opt Express; 2009 Sep 14; 17(19):16834-48. PubMed ID: 19770900. Abstract: Bioluminescence tomography (BLT) poses a typical ill-posed inverse problem with a large number of unknowns and a relatively limited number of boundary measurements. It is indispensable to incorporate a priori information into the inverse problem formulation in order to obtain viable solutions. In the paper, Bayesian approach has been firstly suggested to incorporate multiple types of a priori information for BLT reconstruction. Meanwhile, a generalized adaptive Gaussian Markov random field (GAGMRF) prior model for unknown source density estimation is developed to further reduce the ill-posedness of BLT on the basis of finite element analysis. Then the distribution of bioluminescent source can be acquired by maximizing the log posterior probability with respect to a noise parameter and the unknown source density. Furthermore, the use of finite element method makes the algorithm appropriate for complex heterogeneous phantom. The algorithm was validated by numerical simulation of a 3-D micro-CT mouse atlas and physical phantom experiment. The reconstructed results suggest that we are able to achieve high computational efficiency and accurate localization of bioluminescent source.[Abstract] [Full Text] [Related] [New Search]