These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: All leg joints contribute to quiet human stance: a mechanical analysis.
    Author: Günther M, Grimmer S, Siebert T, Blickhan R.
    Journal: J Biomech; 2009 Dec 11; 42(16):2739-46. PubMed ID: 19772965.
    Abstract:
    According to the state of the art model (single inverted pendulum) the regulation of quiet human stance seems to be dominated by ankle joint actions. Recent findings substantiated both in-phase and anti-phase fluctuations of ankle and hip joint kinematics can be identified in quiet human stance. Thus, we explored in an experimental study to what extent all three leg joints actually contribute to the balancing problem of quiet human stance. We also aimed at distinguishing kinematic from torque contributions. Thereto, we directly measured ankle, knee, and hip joint kinematics with high spatial resolution and ground reaction forces. Then, we calculated the six respective joint torques and, additionally, the centre of mass kinematics. We searched for high cross-correlations between all these mechanical variables. Beyond confirming correlated anti-phase kinematics of ankle and hip, the main results are: (i) ankle and knee joint fluctuate tightly (torque) coupled and (ii) the bi-articular muscles of the leg are well suited to fulfil the requirements of fluctuations around static equilibrium. Additionally, we (iii) identified high-frequency oscillations of the shank between about 4 and 8 Hz and (iv) discriminated potentially passive and active joint torque contributions. These results demonstrate that all leg joints contribute actively and concertedly to quiet human stance, even in the undisturbed case. Moreover, they substantiate the single inverted pendulum paradigm to be an invalid model for quiet human stance.
    [Abstract] [Full Text] [Related] [New Search]