These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Granulocyte-macrophage colony-stimulating factor increases synthesis and expression of CR1 and CR3 by human peripheral blood neutrophils. Author: Neuman E, Huleatt JW, Jack RM. Journal: J Immunol; 1990 Nov 15; 145(10):3325-32. PubMed ID: 1977799. Abstract: Polymorphonuclear leukocytes (PMN) constitutively synthesize various plasma membrane proteins including CR1(3) (CD35), CR3 (or Mac-1) alpha-chain (CD11b) and MHC class I. PMN are also able to up-regulate rapidly the expression of CR1 and CR3 to the plasma membrane in response to agonists such as FMLP. To determine whether constitutive PMN translation was static or up-regulatable, PMN were cultured in the presence or absence of the cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) for 8 h. CR1, CR3 and class I proteins immunoprecipitated from lysates of 35S-methionine pulse-labeled PMN were resolved by SDS-PAGE, fluorographed and quantified by densitometry. GM-CSF-treated PMN synthesized 4.5-fold more class I protein, 3.7-fold more CR1, 2.4-fold more CD11b and 3.4-fold more CR3 beta-chain (CD18), compared with untreated control cells. Actinomycin D treatment of replicate samples of PMN decreased the amount of these proteins synthesized by each group of PMN from 30 to 90%, implying that continued translation was required for the increases in protein synthesis. Nascent CR and class I proteins were inserted into the plasma membrane of PMN, thereby supplementing the molecules already expressed on the cell surface. In addition to these longer term effects of GM-CSF, we observed its acute up-regulatory effects on PMN. GM-CSF induced a five- to 12-fold increase in the expression of CR1 and CR3 on the PMN cell surface within 30 min. These increases were both dose- and time-dependent with maximum up-regulation occurring at 25 pM and at 30 min. In contrast to the long term biosynthetic events, this rapid up-regulation was not dependent on protein synthesis but was due instead to mobilization of CR from intracellular compartments similar to those up-regulated by FMLP. These results demonstrate that PMN can respond to microenvironmental stimuli such as GM-CSF both by rapidly up-regulating and increasing translation and expression of functionally important plasma membrane proteins.[Abstract] [Full Text] [Related] [New Search]