These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Structural, magnetic, and Mössbauer spectral study of the electronic spin-state transition in [Fe{HC(3-Mepz)2(5-Mepz)}2](BF4)2. Author: Reger DL, Elgin JD, Foley EA, Smith MD, Grandjean F, Long GJ. Journal: Inorg Chem; 2009 Oct 05; 48(19):9393-401. PubMed ID: 19780620. Abstract: The complex [Fe{HC(3-Mepz)(2)(5-Mepz)}(2)](BF(4))(2) (pz = pyrazolyl ring) has been prepared by the reaction of HC(3-Mepz)(2)(5-Mepz) with Fe(BF(4))(2) x 6 H(2)O. The solid state structures obtained at 294 and 150 K show a distorted iron(II) octahedral N(6) coordination environment with the largest deviations arising from the restrictions imposed by the chelate rings. At 294 K the complex is predominately high-spin with Fe-N bond distances averaging 2.14 A, distances that are somewhat shorter than expected for a purely high-spin iron(II) complex because of the presence of an admixture of about 80% high-spin and 20% low-spin iron(II). At 294 K the twisting of the pyrazolyl rings from the ideal C(3v) symmetry averages only 2.2 degrees, a much smaller twist than has been observed previously in similar complexes. At 150 K the Fe-N bond distances average 1.99 A, indicative of an almost fully low-spin iron(II) complex; the twist angle is only 1.3 degrees, as expected for a complex with these Fe-N bond distances. The magnetic properties show that the complex undergoes a gradual change from low-spin iron(II) below 85 K to high-spin iron(II) at 400 K. The 4.2 to 60 K Mössbauer spectra correspond to a fully low-spin iron(II) complex but, upon further warming above 85 K, the iron(II) begins to undergo spin-state relaxation between the low- and high-spin forms on the Mössbauer time scale. At 155 and 315 K the complex exhibits spin-state relaxation rates of 0.36 and 7.38 MHz, respectively, and an Arrhenius plot of the logarithm of the relaxation rate yields an activation energy of 670 +/- 40 cm(-1) for the spin-state relaxation.[Abstract] [Full Text] [Related] [New Search]