These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: High-resolution steady-state and time-resolved luminescence studies on the complexes of Eu(III) with aromatic or aliphatic carboxylic acids. Author: Marmodée B, de Klerk JS, Ariese F, Gooijer C, Kumke MU. Journal: Anal Chim Acta; 2009 Oct 12; 652(1-2):285-94. PubMed ID: 19786194. Abstract: Eu(III) luminescence spectroscopy, both in the steady-state and the time-resolved mode, is an appropriate technique to study the properties of complexes between heavy metal ions and humic substances (HS), which play a key role in the distribution of metal species in the environment. Unfortunately, room temperature luminescence spectra of Eu(III) complexes with aromatic and aliphatic carboxylic acids - model compounds of HS binding sites - are too broad to fully exploit their potential analytical information content. It is shown that under cryogenic conditions fluorescence-line-narrowing (FLN) is achieved, and the highly resolved spectra provide detailed information on the complexes. Ten model ligands were investigated. Total luminescence spectra (TLS) were recorded, using the (5)D(0)<--(7)F(0) transition for excitation and the (5)D(0)-->(7)F(1) and (5)D(0)-->(7)F(2) transitions for emission. The energy of the excitation transition depends on the ligand involved and the structure and composition of the complex. For most ligands, discontinuities in the high-resolution TLS indicated that more species, i.e. distinct complex structures, coexisted in the sample. Selective excitation was performed to measure the species-associated luminescence decay times tau. The latter strongly depend on nearby OH oscillators from coordinating water molecules or ligand hydroxyl groups. Furthermore, the asymmetry ratios r, defined as the intensity ratio of the (5)D(0)-->(7)F(2) and (5)D(0)-->(7)F(1) transitions, were calculated and the variation of the excitation energy E(exc) with the splitting of the (7)F(1) triplet (DeltaE) was determined, which yielded the crystal field strength parameter N(nu)(B(2q)), as well as the crystal field parameters B(20) and B(22). An in-depth analysis of the results is presented, providing detailed information on the number of coexisting complexes, their stoichiometry, the number of water molecules in the first coordination sphere and their geometry (symmetry point group).[Abstract] [Full Text] [Related] [New Search]