These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Tissue-specific enhancer of the human multidrug-resistance (MDR1) gene.
    Author: Kohno K, Sato S, Uchiumi T, Takano H, Kato S, Kuwano M.
    Journal: J Biol Chem; 1990 Nov 15; 265(32):19690-6. PubMed ID: 1978833.
    Abstract:
    Identification of cis-regulatory sequences is a first step in analyzing the regulation of the human multidrug-resistant 1 (MDR1) gene which encodes the 170-kilodalton membrane P-glycoprotein in normal tissues and tumor cells. We have studied several overlapping genomic clones containing the 5'-flanking region of the gene. These clones span about 30 kilobases (kb) of contiguous DNA containing 10 kb of the gene and 20 kb of the 5'-flanking sequence. The nucleotide sequence of the first exon and the 2 kb preceding the exon were determined. DNA sequences containing the 5'-flanking regions were linked to the chloramphenicol acetyltransferase (CAT) gene. For transient CAT assay, we have employed six cell lines, including human cancer KB, vincristine-resistant VJ-300 derived from KB, mouse adrenal tumor Y-1, African green monkey kidney CV-1, mouse fibroblast NIH3T3, and human adrenal carcinoma SW-13 cells. Promoter activity was very weak regardless of the length of the promoter region in mouse adrenal tumor Y-1 and monkey kidney CV-1 cells, in which endogenous P-glycoprotein was expressed. Introduction of a 700-base genomic DNA fragment from a site located at 10 kb far upstream of the initiation site increased the transcription of the CAT gene in Y-1, CV-1, and SW-13 cells. However, no significant increase in the CAT activity could be observed in NIH3T3, KB, and VJ-300 cells. This fragment markedly augmented the expression of the CAT gene regardless of orientation or position, and it acted in a cell type-specific manner even with heterogenous promoters. Our present study suggests that the 700-base pair fragment may carry a tissue-specific transcriptional enhancer that is active in at least some adrenal and kidney-derived cell lines.
    [Abstract] [Full Text] [Related] [New Search]