These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Uptake and binding of the serotonin 5-HT1A antagonist [18F]-MPPF in brain of rats: effects of the novel P-glycoprotein inhibitor tariquidar. Author: la Fougère C, Böning G, Bartmann H, Wängler B, Nowak S, Just T, Wagner E, Winter P, Rominger A, Förster S, Gildehaus FJ, Rosa-Neto P, Minuzzi L, Bartenstein P, Potschka H, Cumming P. Journal: Neuroimage; 2010 Jan 15; 49(2):1406-15. PubMed ID: 19796699. Abstract: We used microPET to map the dose-response to the novel P-glycoprotein (P-gp) inhibitor tariquidar (TQD) of the initial influx of the P-gp substrate [(18)F]-MPPF in rat brain, and to test for effects of P-gp inhibition on the subsequent binding of [(18)F]-MPPF to serotonin 5-HT(1A) receptors. Summation maps of [(18)F]-MPPF uptake during the first 100 seconds after intravenous injection were calculated in groups of rats with vehicle (glucose 5%) pretreatment, or following pretreatment with TQD at doses of 5, 15, or 30 mg/kg. The early summation image (K(1)-weighted), were validated as a surrogate marker for the physiological blood-brain clearance (K(1); ml g(-)(1) min(-1)) by linear graphic analysis of the unidirectional blood-brain clearance relative to an image-based arterial input measured in the left ventricle of the heart. In the same animals, parametric maps of the [(18)F]-MPPF binding potential (BP(ND)) were calculated from the entire 60-minute emission recordings using conventional reference tissue methods. All [(18)F]-MPPF recordings were followed by an [(18)F]-FDG emission recording, the summation of which was used for spatial normalization to a rat brain atlas. Test-retest variability of K(1)-weighted uptake and BP(ND) was 25%. TQD treatment evoked a global dose-dependent increase in K(1)-weighted summation, which increased 2.5-fold with TQD (30 mg/kg), suggesting an IC(50) of 5 mg/kg TQD. All TQD doses increased the apparent [(18)F]-MPPF BP(ND) calculated by the Logan method by 30%-40%, a bias likely arising due to increased free [(18)F]-MPPF concentrations in brain. TQD (15 mg/kg) evoked a 45% global increase in [(18)F]-FDG uptake, suggesting perturbation of brain energy metabolism due to P-gp blockade.[Abstract] [Full Text] [Related] [New Search]