These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The maxillary sinus in three genera of new world monkeys: factors that constrain secondary pneumatization. Author: Smith TD, Rossie JB, Cooper GM, Carmody KA, Schmieg RM, Bonar CJ, Mooney MP, Siegel MI. Journal: Anat Rec (Hoboken); 2010 Jan; 293(1):91-107. PubMed ID: 19798701. Abstract: The air filled cavities of paranasal sinuses are thought by some to appear opportunistically in spatial "gaps" within the craniofacial complex. Anthropoid primates provide excellent natural experiments for testing this model, since not all species possess a full complement of paranasal sinuses. In this study, two genera of monkeys (Saguinus and Cebuella) which form maxillary sinuses (MS) as adults were compared to squirrel monkeys (Saimiri spp.), in which a MS does not form. Using microCT and histomorphometric methods, the spatial position of paranasal spaces was assessed and size of the adjacent dental sacs was measured. In Saguinus, secondary pneumatization is underway perinatally, and the sinus extends alongside deciduous premolars (dp). The MS overlaps all permanent molars in the adult. In Saimiri, the homologous space (maxillary recess) extends no farther posterior than the first deciduous premolar at birth and extends no farther than the last premolar in the adult. Differences in dental size and position may account for this finding. For example, Saimiri has significantly larger relative dp volumes, and enlarged orbits, which encroach on the internasal space to a greater degree when compared to Saguinus. These factors limit space for posterior expansion of the maxillary recess. These findings support the hypothesis that secondary pneumatization is a novel, opportunistic growth mechanism that removes "unneeded" bone. Moreover, paranasal spaces occur in association with semiautonomous skeletal elements that border more than one functional matrix, and the spatial dynamics of these units can act as a constraint on pneumatic expansion of paranasal spaces.[Abstract] [Full Text] [Related] [New Search]